Name File Type Size Last Modified
  output 08/23/2024 03:51:PM
  responsefiles 08/23/2024 03:55:PM
  temp 08/23/2024 03:51:PM
README_web_survey.txt text/plain 708 bytes 08/23/2024 11:51:AM
prelim_handler_rd2_c.php text/x-php 610 bytes 08/23/2024 11:51:AM
product_handler_rd2_c.php text/x-php 1.3 KB 08/23/2024 11:51:AM
survey_prelim_rd2_c.php text/html 2.4 KB 08/23/2024 11:51:AM
survey_product_rd2_c0.php text/html 9.9 KB 08/23/2024 11:51:AM
survey_product_rd2_c1.php text/html 10 KB 08/23/2024 11:51:AM
thankyou_rd2_c0.htm text/html 644 bytes 08/23/2024 11:51:AM

Project Description

Summary:  View help for Summary Data and code for: Triplet Embeddings for Demand Estimation. 

We propose a method to augment conventional demand estimation approaches with crowdsourced data on the product space.  Our method obtains triplets data (``product A is closer to B than it is to C'') from an online survey to compute an embedding---i.e., a low-dimensional representation of the latent product space. The embedding can either (i) replace data on observed characteristics in mixed logit models, or (ii) provide pairwise product distances to discipline cross-elasticities in log linear models.  We illustrate both approaches by estimating demand for ready-to-eat cereals; the information contained in the embedding leads to more plausible substitution patterns and better fit.

Scope of Project

Subject Terms:  View help for Subject Terms Embeddings; demand estimation
JEL Classification:  View help for JEL Classification
      L10 Market Structure, Firm Strategy, and Market Performance: General


Related Publications

Published Versions

Export Metadata

Report a Problem

Found a serious problem with the data, such as disclosure risk or copyrighted content? Let us know.

This material is distributed exactly as it arrived from the data depositor. ICPSR has not checked or processed this material. Users should consult the investigator(s) if further information is desired.